458 research outputs found

    Generation of coherent terahertz pulses in Ruby at room temperature

    Get PDF
    We have shown that a coherently driven solid state medium can potentially produce strong controllable short pulses of THz radiation. The high efficiency of the technique is based on excitation of maximal THz coherence by applying resonant optical pulses to the medium. The excited coherence in the medium is connected to macroscopic polarization coupled to THz radiation. We have performed detailed simulations by solving the coupled density matrix and Maxwell equations. By using a simple VV-type energy scheme for ruby, we have demonstrated that the energy of generated THz pulses ranges from hundreds of pico-Joules to nano-Joules at room temperature and micro-Joules at liquid helium temperature, with pulse durations from picoseconds to tens of nanoseconds. We have also suggested a coherent ruby source that lases on two optical wavelengths and simultaneously generates THz radiation. We discussed also possibilities of extension of the technique to different solid-state materials

    Resonant enhancement of the zero-phonon emission from a color center in a diamond cavity

    Full text link
    We demonstrate coupling of the zero-phonon line of individual nitrogen-vacancy centers and the modes of microring resonators fabricated in single-crystal diamond. A zero-phonon line enhancement exceeding ten-fold is estimated from lifetime measurements at cryogenic temperatures. The devices are fabricated using standard semiconductor techniques and off-the-shelf materials, thus enabling integrated diamond photonics.Comment: 5 pages, 4 figure

    Randomized trial of bilateral versus single internal-thoracic-artery grafts

    Get PDF
    Background: The use of bilateral internal thoracic (mammary) arteries for coronary-artery bypass grafting (CABG) may improve long-term outcomes as compared with the use of a single internal-thoracic-artery plus vein grafts. Methods: We randomly assigned patients scheduled for CABG to undergo single or bilateral internal-thoracic-artery grafting in 28 cardiac surgical centers in seven countries. The primary outcome was death from any cause at 10 years. The composite of death from any cause, myocardial infarction, or stroke was a secondary outcome. Interim analyses were prespecified at 5 years of follow-up. Results: A total of 3102 patients were enrolled; 1554 were randomly assigned to undergo single internal-thoracic-artery grafting (the single-graft group) and 1548 to undergo bilateral internal-thoracic-artery grafting (the bilateral-graft group). At 5 years of follow-up, the rate of death was 8.7% in the bilateral-graft group and 8.4% in the single-graft group (hazard ratio, 1.04; 95% confidence interval [CI], 0.81 to 1.32; P=0.77), and the rate of the composite of death from any cause, myocardial infarction, or stroke was 12.2% and 12.7%, respectively (hazard ratio, 0.96; 95% CI, 0.79 to 1.17; P=0.69). The rate of sternal wound complication was 3.5% in the bilateral-graft group versus 1.9% in the single-graft group (P=0.005), and the rate of sternal reconstruction was 1.9% versus 0.6% (P=0.002). Conclusions: Among patients undergoing CABG, there was no significant difference between those receiving single internal-thoracic-artery grafts and those receiving bilateral internal-thoracic-artery grafts with regard to mortality or the rates of cardiovascular events at 5 years of follow-up. There were more sternal wound complications with bilateral internal-thoracic-artery grafting than with single internal-thoracic-artery grafting. Ten-year follow-up is ongoing. (Funded by the British Heart Foundation and others; ART Current Controlled Trials number, ISRCTN46552265.

    Enhanced reaction kinetics in biological cells

    Full text link
    The cell cytoskeleton is a striking example of "active" medium driven out-of-equilibrium by ATP hydrolysis. Such activity has been shown recently to have a spectacular impact on the mechanical and rheological properties of the cellular medium, as well as on its transport properties : a generic tracer particle freely diffuses as in a standard equilibrium medium, but also intermittently binds with random interaction times to motor proteins, which perform active ballistic excursions along cytoskeletal filaments. Here, we propose for the first time an analytical model of transport limited reactions in active media, and show quantitatively how active transport can enhance reactivity for large enough tracers like vesicles. We derive analytically the average interaction time with motor proteins which optimizes the reaction rate, and reveal remarkable universal features of the optimal configuration. We discuss why active transport may be beneficial in various biological examples: cell cytoskeleton, membranes and lamellipodia, and tubular structures like axons.Comment: 10 pages, 2 figure

    Radiation hydrodynamics of SN 1987A: I. Global analysis of the light curve for the first 4 months

    Full text link
    The optical/UV light curves of SN 1987A are analyzed with the multi-energy group radiation hydrodynamics code STELLA. The calculated monochromatic and bolometric light curves are compared with observations shortly after shock breakout, during the early plateau, through the broad second maximum, and during the earliest phase of the radioactive tail. We have concentrated on a progenitor model calculated by Nomoto & Hashimoto and Saio, Nomoto, & Kato, which assumes that 14 solar masses of the stellar mass is ejected. Using this model, we have updated constraints on the explosion energy and the extent of mixing in the ejecta. In particular, we determine the most likely range of E/M (explosion energy over ejecta mass) and R_0 (radius of the progenitor). In general, our best models have energies in the range E = (1.1 +/- 0.3) x 10^{51} ergs, and the agreement is better than in earlier, flux-limited diffusion calculations for the same explosion energy. Our modeled B and V fluxes compare well with observations, while the flux in U undershoots after about 10 days by a factor of a few, presumably due to NLTE and line transfer effects. We also compare our results with IUE observations, and a very good quantitative agreement is found for the first days, and for one IUE band (2500-3000 A) as long as for 3 months. We point out that the V flux estimated by McNaught & Zoltowski should probably be revised to a lower value.Comment: 27 pages AASTeX v.4.0 + 35 postscript figures. ApJ, accepte

    Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance

    Get PDF
    Using pulsed optically detected magnetic resonance techniques, we directly probe electron-spin resonance transitions in the excited-state of single Nitrogen-Vacancy color centers in diamond. Unambiguous assignment of excited state fine structure is made, based on changes of NV defect photoluminescence lifetime. This study provides significant insight into the structure of the emitting 3E excited state, which is invaluable for the development of diamond-based quantum information processing.Comment: 10 pages, 4 figure

    The Energy Landscape, Folding Pathways and the Kinetics of a Knotted Protein

    Get PDF
    The folding pathway and rate coefficients of the folding of a knotted protein are calculated for a potential energy function with minimal energetic frustration. A kinetic transition network is constructed using the discrete path sampling approach, and the resulting potential energy surface is visualized by constructing disconnectivity graphs. Owing to topological constraints, the low-lying portion of the landscape consists of three distinct regions, corresponding to the native knotted state and to configurations where either the N- or C-terminus is not yet folded into the knot. The fastest folding pathways from denatured states exhibit early formation of the N-terminus portion of the knot and a rate-determining step where the C-terminus is incorporated. The low-lying minima with the N-terminus knotted and the C-terminus free therefore constitute an off-pathway intermediate for this model. The insertion of both the N- and C-termini into the knot occur late in the folding process, creating large energy barriers that are the rate limiting steps in the folding process. When compared to other protein folding proteins of a similar length, this system folds over six orders of magnitude more slowly.Comment: 19 page

    Quantum Statistics of Surface Plasmon Polaritons in Metallic Stripe Waveguides

    Full text link
    Single surface plasmon polaritons are excited using photons generated via spontaneous parametric down-conversion. The mean excitation rates, intensity correlations and Fock state populations are studied. The observed dependence of the second order coherence in our experiment is consistent with a linear uncorrelated Markovian environment in the quantum regime. Our results provide important information about the effect of loss for assessing the potential of plasmonic waveguides for future nanophotonic circuitry in the quantum regime.Comment: 21 pages, 6 figures, published in Nano Letters, publication date (web): March 27 (2012
    corecore